まる ばつ ゲーム 必勝 法。 マルバツゲームは引き分けになる

三目並べ

まる ばつ ゲーム 必勝 法

マルバツゲーム(三目並べ)では両者が頑張れば必ず引き分けになる。 マルバツゲームのルール 二人で行うゲームです。 ときどき先攻が勝つこともありますが,後攻が勝つことはまずありません。 マルバツゲームは引き分けになる 実は,先攻も後攻も頑張れば必ず引き分けになることが知られています。 どちらにも必勝法はありません。 先攻が負けないことは簡単に確認できます(最初に真ん中に打てば後攻がビンゴを作るのは絶望的ですね)。 後攻も頑張れば引き分けに持ち込めます(後述)。 後攻が負けない戦略 後攻が負けない戦略を詳しく見ていきます。 ただし,例外が1つだけあります。 次の先攻の手としては以下の4パターンありますが,それぞれ「基本的な考え方」に従えば引き分けに持ち込めます(証明略)。 5手目以降も気になる方はぜひ自力で確認してみてください。 次の先攻の手として4パターンあります。 そのうち3パターンは上記と同様に「基本的な考え方」に従って打てば引き分けに持ち込めます。 先攻が右下に打ってきた場合だけ注意が必要です。 先攻は次にどこに打ってもビンゴを作るのは厳しそうですね(同様に確認できます)。

次の

【高齢者向けクイズ】『おもしろ』雑学マルバツ問題で脳トレ!!全30問

まる ばつ ゲーム 必勝 法

[ ] ミニマックス法と三目並べ 今回は囲碁や将棋のように 2 人が交互に 1 手ずつ指していくゲームを取り上げます。 コンピュータにゲームの相手をさせる場合、コンピュータの指し手を決定するためのプログラム、いわゆる「思考ルーチン」が必要になります。 この思考ルーチンで使われる基本的なアルゴリズムが「ミニマックス法 mini-max method 」です。 難しそうな名前がついていますが、ミニマックス法は基本的には深さ優先探索と同じです。 拙作のページ で説明した基本的な探索アルゴリズムを理解していれば、それほど難しい話ではありません。 そうはいっても、実際のゲームで強い思考ルーチンを作成するのは簡単な話ではありません。 チェスや将棋などに比べると、リバーシの思考ルーチンは簡単だといわれています。 ところが、実際にプログラムしてみると強い思考ルーチンを作るのは本当に難しい、というのが M. Hiroi の実感です。 それでも、リバーシは終盤になると最後まで読み切ることができるので、初心者や初級者レベルよりも強いプログラムを作るのは比較的簡単なほうでしょう。 今回は思考ゲームの基本とミニマックス法について説明します。 そして、簡単なゲームである「三目並べ」の勝敗結果 先手必勝、後手必勝、引き分け をミニマックス法で調べてみましょう。 最初に思考ゲームの基本とミニマックス法について説明します。 なお、この説明は拙作のページ と同じです。 読んだことがある方や思考ゲームついて理解されている方は読み飛ばしてもらってもかまいません。 指し手が進むにつれて盤面の状態は変化し、最後にはゲームが終了します。 このようなゲームでは、その状態の変化を木構造に対応させることができます。 これを「ゲームの木 game tree 」といいます。 たとえば、「エイト」というゲームを考えてみます。 このゲームのルールは、2 人のプレーヤーが 1 から 3 までの数字を交互に選び、2 人が選んだ数の合計が 8 になったら勝ち、8 を越えたら負けになります。 数字の選び方には条件があって、一番最初は好きな数字を選ぶことができますが、それ以降は前回相手が選んだ数を選ぶことはできません。 このゲームの木は、手作業でも簡単に作成することができます。 下図にゲームの木の一部を示します。 先手は最初に 1 から 3 の中の好きな数字を選ぶことができます。 この木は、最初に先手が 2 を選び、次に後手が 1 を選んだ状態のゲームの木を示しています。 数字の合計が 8 以上になったらゲームは終了です。 木の高さはたかだか 6 レベルしかないので、エイトはとても簡単なゲームであることがわかります。 エイトのように、ゲーム開始から終了までの「ゲームの木」を作成できれば完璧な指し手を実現できます。 ところが一般のゲームでは、ある局面で可能な指し手は多数あるので、ゲームの木はとても大きくなります。 このため、完全なゲームの木を作成することは不可能です。 そこで、不完全ですが数レベル分の木を作成します。 つまり、数手先読みするわけです。 先読みした局面の状態は、ほとんどが勝ちでも負けでもない曖昧なものです。 ここで、その局面の状態を評価して、自分が有利であれば 50 点とか不利であれば -10 点という具合に、局面の状態を数値化します。 この処理を行う関数を「評価関数」といいます。 とりあえず勝ち負けはわかりませんが、この評価値が高くなるように、つまり自分が有利になるように指し手を進めていくわけです。 もしも、完璧な評価関数がわかれば、その局面の状態から最善手がわかることになり、わざわざ木を探索する必要はありません。 ところが、一般のゲームは状況がとても複雑なので、局面を正確に評価することは至難の技です。 計算した評価値はどうしても適当なものになってしまいます。 そこで、これを補うために「ミニマックス法」という手法を使います。 ミニマックス法の考え方はそれほど難しいものではありません。 自分にとって良い指し手は相手にとって都合が悪く、逆もまたそうであるという仮説に基づいたアルゴリズムです。 ゲームの木を何層か探索して、その局面を評価することは同じですが、「相手は自分に取って最悪の指し手を選択する」と仮定するところが、このアルゴリズムのポイントです。 つまり、自分の指し手では評価値が最大になるように選択し、相手の指し手では評価値が最小になるように選択するのです。 これが「ミニマックス」という名前の由来です。 ひらたくいえば、相手の手を先読みして自分の手を決めるということです。 たとえば将棋の場合でも、駒の動かし方がわかる程度の初心者では相手の手を読むことは難しいですが、慣れてくると 2 手 3 手程度の先読みはできるようになります。 これがプロ棋士になると、十数手から二十手前後まで考えるというのですから驚きです。 ミニマックス法を使う場合でも、評価関数が適切なものであれば、ゲームの木を深く探索するほど正確な評価値を求めることができるようになります。 ただし、木を深いレベルまで探索しようとすると、特に囲碁や将棋のような一つの局面で有効な指し手が多数あるゲームでは、木の枝が多数分岐するので、探索のために消費するメモリと時間が膨大なものになってしまいます。 これを防ぐために「アルファベータ法」という方法を用いたり、ほかにもさまざまな工夫を行うことで無駄な木の探索を極力省くようにします。 それでもハードウェアの限界により、ある程度のレベルで探索を打ち切ることになります。 また、持ち時間が設定されている場合は、それも考慮して探索レベルを決める必要があります。 ここでは、簡単な仮想ゲームを考えてみます。 このゲームは、先手後手とも指し手は常に 2 通りあって、そのうちの一つを選ぶことでゲームが進行します。 ミニマックス法を使う場合、局面の評価値が必要になります。 評価関数は、先手が有利(後手が不利)な局面ほど大きな値(正の値)、逆に後手が有利(先手が不利)なほど小さな値(負の値)、互角の場合は 0 になるように作るのが一般的です。 探索のレベルは、先手-後手-先手の 3 手先まで読むことにします。 先手の局面 R を探索すると、下図に示すゲームの木になりました。 評価値は最も深いレベル、この場合は 3 手指した後手の局面で計算します。 3 レベルまで探索すると 8 通りの評価値が計算されますが、この評価値を使って、A と B のどちらの手を指すかミニマックス法で決定します。 R - A - C の局面に注目してください。 この局面では、先手は 2 通りの指し手があり、それぞれ G と H という局面になります。 この局面の評価値を計算すると、それぞれ 1 と 3 になります。 ここでは先手の手番ですから、評価値が最大になるような指し手を選択します。 したがって、局面 C の評価値は 3 に定まります。 同様に R - A - D の局面を計算すると、局面 D の評価値は 4 になります。 局面 C と D の評価値が決まったので、局面 A の評価値を決めることができます。 局面 A は後手の手番ですから、今度は評価値が最小になるような指し手を選びます。 局面 C と D の小さい方を選ぶので、局面 A の評価値は 3 になります。 同様に局面 B の評価値を求めると 2 になります。 局面 R は先手の手番なので、評価値の大きい指し手を選びます。 この場合は、A が有利であることがわかります。 このように、先手番では評価値が最大値となる指し手を選び、後手番では評価値が最小値となる指し手を選ぶことで、指し手を決定する方法がミニマックス法なのです。 ただし、ミニマックス法で選んだ指し手が最善手である保証はありません。 この例では、ゲームの木を 3 レベル探索して A を選びましたが、もう一段深く探索してみると B の方が有利だった、ということもありえます。 ようするに、3 手先までは読んでいたが、その先の手は読んでいなかった、ということです。 これは私達がゲームをプレイする場合でもあることですね。 もしも、ゲームの木を最後まで探索できれば、最善手を指すことができます。 たとえば、リバーシは終盤になると最後まで読み切ることが可能なゲームです。 この状態になるとコンピュータは最善手を指してきます。 コンピュータリバーシの得意技「終盤の大逆転」は、ゲームの木を最後まで読み切るからこそできることなのです。 三目並べは、両者が最善を尽くすと引き分けになることが知られています。 本当に引き分けになるのか、プログラムを作って確かめてみましょう。 三目並べは簡単なゲームなので、ゲーム終了まで読み切ることができます。 あとは、ミニマックス法により最善手を選択させ、その結果を求めればいいわけです。 とりあえず、プログラムでは指し手を保存しないで、評価値の結果だけを出力することにします。 初手をどこに選んでも、引き分けの評価値が出力されるはずです。 最初に大域変数とアクセス関数を定義します。 n p vector-set! n vector-set! , del-piece! で行います。 盤面の場所とベクタの対応は、上図のように定義します。 たとえば、場所 0 が属する直線は 3 本あって、残り 2 か所の場所は 1 2 , 3 6 , 4 8 となります。 リスト : 勝敗の判定 ; p と同じ駒が 3 つ並ぶか define check-line p a b and eq? get-piece a p eq? get-piece b p p ; 勝敗の判定 define win? ls DRAW case apply check-line p car ls O MARU X BATU else loop cdr ls 関数 win? は駒 p を場所 n に置いたときに勝負が決まるか調べます。 check-line の返り値が O ならば、先手が勝ちなので MARU 1 を返します。 X ならば後手が勝ちなので BATU -1 を返します。 同じ駒が 3 つ並んでいなければ DRAW 0 を返します。 三目並べの場合、ゲーム終了まで読み切ることができるので、評価値は、勝ち、負け、引き分けの 3 つで十分です。 ただし、この関数はゲームの途中でも DRAW を返しますので、引き分けの判定には注意が必要です。 これはあとで説明します。 プログラムは次のようになります。 リスト : 先手の指し手 define think-maru ls let loop xs ls value MIN-VALUE if null? cdr ls put-piece! x 'O set! v think-batu remove-item x ls del-piece! 引数 ls は空き場所を格納したリストです。 選んだ指し手の評価値は value に格納します。 MIN-VALUE は BATU よりも小さな値にします。 この値は、まだ指し手を選んでいないことを表します。 次に、リスト xs から空き場所 x を取り出して、そこに O を置くと勝つことができるか win? を呼び出してチェックします。 評価値 v が DRAW で、盤面にまだ駒が置ける状態であればゲームは終了していません。 cdr ls が空リストでなければゲーム続行、そうでなければ引き分けです。 ゲームを続行する場合は、場所 x に O を書き込んでから、関数 think-batu を呼び出して手番を相手に移します。 そのあと、del-piece! で場所 x の O を取り除きます。 ミニマックス法による指し手の決定は簡単です。 先手は評価値が大きい手を選べばいいのですから、v が value よりも大きな値であれば、それを指し手として選びます。 value は MIN-VALUE に初期化されているので、最初に調べた指し手は必ず選ばれることになります。 ただし、三目並べの場合はゲームを最後まで読みきるので、value の最大値は MARU 1 しかありません。 v が MARU の場合は先手勝ちでゲーム終了なので、MARU をそのまま返します。 プログラムは次のようになります。 リスト : 後手の指し手 define think-batu ls let loop xs ls value MAX-VALUE if null? cdr ls put-piece! x 'X set! v think-maru remove-item x ls del-piece! 空いているコーナーは関数 get-corner で求めます。 空き場所は引数 ls の先頭要素を返すだけです。 最後にゲームを進める関数 play を作ります。 リスト : ゲームの進行 define play ls let loop ls ls turn 'O if null? x turn put-piece! turn 'O 'X 'O 引数 ls は空き場所を格納したリストです。 turn は手番を表す変数です。 move-com で指し手を決め、 win? x turn を呼び出して勝敗の判定を行います。 変数 v の値が MARU または BATU の場合はゲーム終了です。 そうでなければ、手番を変えてゲームを続行します。 n p vector-set! n vector-set! get-piece a p eq? get-piece b p p ; 勝負の判定 define win? ls DRAW case apply check-line p car ls O MARU X BATU else loop cdr ls ; 要素の削除 define remove-item x ls remove lambda y eqv? x y ls ; 先手(まる) define think-maru ls let loop xs ls value MIN-VALUE if null? cdr ls put-piece! x 'O set! v think-batu remove-item x ls del-piece! cdr ls put-piece! x 'X set! v think-maru remove-item x ls del-piece! x ls ;; ;; 戦略に基づいたプレイ ;; ; 勝てる場所を探す define get-win-position p ls find lambda x let v win? modulo x 3 newline print-piece get-piece x ; ゲームの進行 define play ls let loop ls ls turn 'O if null? x turn put-piece! turn 'O 'X 'O ; 実行 solve iota 9 play iota 9.

次の

三目並べ

まる ばつ ゲーム 必勝 法

まるばつゲームはミスをしない限り、先手であろうが後手であろうが引き分けになります。 まるばつゲームを見ると、いつも僕の意識は小学生の夏休みの時空に飛んでしまいます。 住んでいた団地には当時信じられない供達が住んでおり、小学生達は朝広場に半強制的に集められラジオ体操をやらされておりました。 スタンプのカードを首からぶら下げて、参加したら参加した日にちの欄にスタンプを押してもらいます。 そして八月の終わりにスタンプカードと引き換えに何か文房具をもらっていました。 スタンプカードが全部埋まっていないと文房具がもらえないかもしれないとの不安も子供の心を締め付けていたかもしれません。 ラジオ体操が始まる時間は思い出せないのですが、生放送のラジオをかけていたようでしたので六時半から七時の間でしょうか思い出せません。 子供達は始まる前に広場に行き登校班ごとに一列に来た順番に地面に座って待っていました。 会社はいつも遅刻気味なのですが、当時の小学生の僕は絶対に一番乗りする使命感を何事も持っており、早めに広場に行っていました。 どこからその気持ちが湧いていたのかはわからないのです。 早く来るとやる事がありません。 列の先頭を取るために来たので、その場から動く事が出来ません。 そうするとやれることは、後から来て並んだ子供と動かないで何か遊ぶことだけです。 よくやっていたのが、まるばつゲームと棒倒し。 棒倒しは土で小山を作り棒を立てて、交互に山を削っていくのです。 削っていく過程で棒を倒したら負け。 まるばつゲームは余程の小さい子供か余程の間抜けとやらない限り引き分けになるので、当時のぼくは毎朝必勝法を編みだそうと考えていました。 当時はやそれとに心は奪われていたので、魔球や必殺技を編み出す事の使命感に駆られていたとようです。 それでも勝つためにはどうしたら良いか。 そうすると相手は角にXを書きます。 ここで角以外にXを付けるとXの負け。 でもこのミスをする人はまずいません。 まるばつゲームに勝つには、如何に相手のミスを誘い出すかです。 角か端の真ん中にうって、相手の動揺を誘いミスを誘う奇策を編み出し、その時は電気が脳に走り僕は天才やなと勘違いした記憶です。 まるばつゲームはユーチューブにたくさん出ていて、同じことみな考えていたようです。 まるばつゲームの経験から、理屈では勝てないことはわかっていても、相手のミスで勝ててしまう事があるので、最初からあきらめずに粘ってやるのもありなんだなあと。 年取って来るとふと思い出します。 疑惑もどう見ても真っ黒なのですが、証人喚問を拒否し逃げまくり親友を切り捨てる、自分のためなら何でもする粘り強さは、ある意味凄いです。 認めたらおわりですからね。 粘った入れば何かもっと凄い事が起こりうやむやになると思っているのでしょう。 呆れたものです。 まとめ あきらめないで粘り強く我慢して相手のミスを待つことは、最終的には失敗に終わるかもしれません。 その時は時間を無駄にしたことになります。 ですので一般的には早めにあきらめて新たなゲームを始めるのが、正解なんだと思いますので、これは大前提として頭に入れておかないといけません。 に同じこと考えてUPされてました。 じゃんけん必勝を考えました。 こちらもどうぞ。 YESMAN.

次の